Skip to main content

Xorbits inference (Xinference)

This notebook goes over how to use Xinference embeddings within LangChain

Installationโ€‹

Install Xinference through PyPI:

%pip install --upgrade --quiet  "xinference[all]"

Deploy Xinference Locally or in a Distributed Cluster.โ€‹

For local deployment, run xinference.

To deploy Xinference in a cluster, first start an Xinference supervisor using the xinference-supervisor. You can also use the option -p to specify the port and -H to specify the host. The default port is 9997.

Then, start the Xinference workers using xinference-worker on each server you want to run them on.

You can consult the README file from Xinference for more information.

Wrapperโ€‹

To use Xinference with LangChain, you need to first launch a model. You can use command line interface (CLI) to do so:

!xinference launch -n vicuna-v1.3 -f ggmlv3 -q q4_0
Model uid: 915845ee-2a04-11ee-8ed4-d29396a3f064

A model UID is returned for you to use. Now you can use Xinference embeddings with LangChain:

from langchain_community.embeddings import XinferenceEmbeddings

xinference = XinferenceEmbeddings(
server_url="http://0.0.0.0:9997", model_uid="915845ee-2a04-11ee-8ed4-d29396a3f064"
)

API Reference:

query_result = xinference.embed_query("This is a test query")
doc_result = xinference.embed_documents(["text A", "text B"])

Lastly, terminate the model when you do not need to use it:

!xinference terminate --model-uid "915845ee-2a04-11ee-8ed4-d29396a3f064"

Was this page helpful?


You can leave detailed feedback on GitHub.